
1

Introduction
This tutorial shows you how to call the eBay Finding service using the findingKit provided by eBay. It also

shows you how to update the findingKit to a newer version of Finding service when available.

FindingKit provides a simplified client interface that wraps around the standard JAX-WS proxy for the

eBay Finding service. It makes it easier for a developer to interact with the eBay Finding service by hiding

common tasks like xml serialization and http header setting, and by providing common facilities like

message logging.

Below is a tutorial that shows you how to access the eBay Finding service using findingKit. In this tutorial,

you’ll build a simple console application that displays the finding result, using the findItemsByKeywords

call.

Complete Source Code
The complete code is provided in the findingKit package samples\consolefinditem subdirectory.

Before You Begin
There are a few prerequisites for completing this tutorial:

1. You must have installed Sun JDK 1.6.x or above.

2. You must have installed Eclipse IDE 3.2 or above.

3. You have joined the eBay Developers Program and obtained application keys for the eBay

production or sandbox environment.

4. You must have installed Apache Ant 1.7.0 or above if you want to update findingKit to a newer

version of eBay Finding service.

Step 1: Create the Project in Eclipse
Create a Java project called consoleFindItem in Eclipse (see Fig 1).

2

Fig 1. Create a consoleFindItem Java Project

Step 2: Add Reference
Add finding.jar and log4j-1.2.16.jar to the java build path of the consoleFindItem project(see Fig 2.). You

can find these jars in the findingKit\lib folder. The finding.jar contains a JAX-WS proxy for the eBay

Finding service and a few helper classes to simplify interactions with eBay Finding service. Log4j is

internally used by findingKit for message logging.

Fig 2. consoleFindItem Libraries Reference

Step 3 Create the Main Program
Create a FindItem.java file in the project and add the following code in this file (see Listing 1):

3

package com.ebay.sample;

import java.util.List;

import com.ebay.services.client.ClientConfig;

import com.ebay.services.client.FindingServiceClientFactory;

import com.ebay.services.finding.FindItemsByKeywordsRequest;

import com.ebay.services.finding.FindItemsByKeywordsResponse;

import com.ebay.services.finding.FindingServicePortType;

import com.ebay.services.finding.PaginationInput;

import com.ebay.services.finding.SearchItem;

/**

 * A sample to show eBay Finding service call using the simplified interface

 * provided by the findingKit.

 *

 * @author boyang

 *

 */

public class FindItem {

 public static void main(String[] args) {

 try {

 // initialize service end-point configuration

 ClientConfig config = new ClientConfig();

 config.setApplicationId("Your AppID here");

 //create a service client

 FindingServicePortType serviceClient =

 FindingServiceClientFactory.getServiceClient(config);

 //create request object

 FindItemsByKeywordsRequest request = new FindItemsByKeywordsRequest();

 //set request parameters

 request.setKeywords("harry potter phoenix");

 PaginationInput pi = new PaginationInput();

 pi.setEntriesPerPage(2);

 request.setPaginationInput(pi);

 //call service

 FindItemsByKeywordsResponse result =

 serviceClient.findItemsByKeywords(request);

 //output result

 System.out.println("Ack = "+result.getAck());

 System.out.println("Find " + result.getSearchResult().getCount() + "

 items.");

 List<SearchItem> items = result.getSearchResult().getItem();

 for(SearchItem item : items) {

 System.out.println(item.getTitle());

 }

 } catch (Exception ex) {

 // handle exception if any

 ex.printStackTrace();

 }

 }

}

Listing 1. FindItem.java

4

The program starts by importing Java and findingKit classes. Here we import ClientConfig,

FindingServiceClientFactory and some Finding service types such as FindItemsByKeywordsRequest,

FindItemsByKeywordsResponse.

The main function shows a typical Finding service call flow which is analyzed as following:

1. Setup Client Configuration

Client side configuration, such as application id, must be set up before the client can communicate with

an eBay service. In the sample, we instantiate a ClientConfig instance and set configurations accordingly.

For all supported configurations, please refer to the source of the ClientConfig class. Note, some

configurations are mandatory, such as application id, while others are optional, such as enabling logging.

Regarding target service endpoint address, by default the Finding service production server address will

be used. If you want to point to the Finding service sandbox server address, just set the address on the

ClientConfig instance to override the default one.

2. Create Service Client

An application uses the service client to communicate with a service. In the sample, we can easily get a

Finding service client instance by invoking the static factory method on the FindingServiceClientFactory

class.

3. Create Outbound Request and Setup Request Parameters

To call an operation on a service, you need to create a request and populate request parameters first. In

the sample, we create a FindItemsByKeywordsRequest instance, and populate keyword and pagination

information accordingly. For all supported input parameters of a request type, please refer to eBay

Finding Service Call Reference.

4. Call the Operation on the Service Client and Receive Inbound Response

Real interaction between an application and an eBay service takes place here. You call an operation on

the service client and pass in the request instance as a parameter. If the call is successful, you will get a

corresponding response instance. Behind the scenes, JAX-WS proxy will do the low-level message

communication tasks. In the sample, we call findItemsByKeywords operation on the client, and pass in

the FindItemsByKeywordsRequest instance we already created above. On a successful call, we will get a

FindItemsByKeywordsResponse instance.

5. Handle Response

Once you get the response, it’s up to you to decide how to further handle or present the response. In

the sample, we simply log the found items number and titles to the console window. For all supported

output parameters of a response type, please refer to eBay Finding Service Call Reference.

6. Handle Exception

If any of the above steps goes wrong (for example, if the service call fails and throws an exception), it’s

the application’s responsibility to capture and handle exception accordingly. In the sample, we simply

output the exception to the console window.

http://developer.ebay.com/DevZone/finding/CallRef/index.html
http://developer.ebay.com/DevZone/finding/CallRef/index.html
http://developer.ebay.com/DevZone/finding/CallRef/index.html

5

Step 4 Configure Logging
FindingKit internally uses log4j for message logging. If you want to enable payload logging, you need to

configure log4j properly. In the sample, we add a log4j.properties file in the src folder of the project to

configure the log4j to send the log to the console (see Fig 3.). For log4j details and its settings, please

refer to its official site.

Fig 3. log4j.properties file

Step 5 Run the Application
Before running the program, you must substitute your own eBay Developer Account Application ID in

the code. Then, right-click the FindItem.java file, and in the popup menu click Run As -> Java Application

to run the sample.

If everything works fine, you will see results similar to Fig 4.

http://logging.apache.org/log4j/1.2/

6

Fig 4. Console Output

Now you have a working sample that can call eBay Finding service via findingKit. Congratulations!

How to Update the FindingKit to a New WSDL
The current findingKit is built with Finding service wsdl version 1.9.0. We provide ant build script in the

package to let user update (or sync) to the latest WSDL.

If a new Finding service WSDL is published by eBay, you can simply update (or sync) to the latest version

as follows:

1. Backup and remove the old finding.jar file in the lib of the findingKit package.

2. Download the latest eBay Finding service wsdl and put it in the wsdl folder of the findingKit

package.

3. Update the wsdl.file property in the build.properties file if your wsdl file name is not the default

(FindingService.wsdl), then change the target jar name or package name if necessary.

4. In command line, change directory to the root of the findingKit and run ‘ant build’.

5. Verify that the finding.jar (or other name if you override the jar name in the build.properties file)

in the lib folder has been successfully built.

Now your findingKit is updated to the latest eBay Finding WSDL.

